Conforming, Tetrahedral Meshing of Image Data

Jonathan Bronson
with
Joshua Levine & Ross Whitaker
Motivation

• **BioMesh3D**
 - State of the start
 - Adaptive
 - Mostly good quality elements
 - May produce degenerate elements
 - Slow

• **What we’d like**
 - No degenerate elements.
 - Bounded worst-case element quality
 - Guarantees on conformity / fidelity
 - Fast
Element Quality

- Dihedral Angles
- Condition Number

![Diagram showing condition number vs. worst dihedral angle]
Approach

• Combinatoric (not variational)
 o Background mesh (structured)
 o Stencils to capture surfaces

• Inherent Tradeoff
 o Deforming background grid (small deviations)
 o Cutting / Subdividing (large deviations)
 o Labelle & Shewchuck [SIGGRAPH 2007]
Violations

• Cut-Vertex violations
 o Defined by Labelle & Shewchuck
 o Using definition $c_{12} = (1-t)v_1 + (t)v_2$
 • c_{12} violates v_1 if $t < \alpha$
 • c_{12} violates v_2 if $t > (1-\alpha)$
Violations

• Cut-Vertex violations
 o Defined by Labelle & Shewchuck
 o Using definition $c_{12} = (1 - t)v_1 + (t)v_2$
 • c_{12} violates v_1 if $t < \alpha$
 • c_{12} violates v_2 if $t > (1 - \alpha)$

Guards against bad angles in the necessary in the tessellation of the remaining polygon region.
Multi-Material Challenges

- Higher dimensional features
- Interfaces may form sharp cusps
- Complexity of cases
 - Arbitrarily many cases even with linear elements
 - Not all representable
 - Snaps/warps more constrained

![Diagrams showing geometric transformations](image)
Algorithm Overview

• Begin with background tetrahedral mesh
• Compute material interface points
 o 2-material cut-points
 o 3-material triple-points
 o 4-material quadruple-points
• Generalize stencils
• Iterate over k-cells of background mesh
 o Snap/Warp violating interface points.
 o Resolve Degeneracies
• Fill in stencil tetrahedra
Representing Volumes

- Background BCC-Lattice
- Compute material transitions
Stencils

• Other stencil schemes
 o “Marching Tetrahedra”
 o “Multi-tissue Mesh Generation for Brain Images”, Liu et al. [IMR 2010]
 • Subdivision scheme
 • Different constraints
Stencils

- Face tessellations must be consistent
- Snaps can topology
- May lead to invalid meshes
Stencils

- Treat all lattice tet cases as degeneracy of 4-case
- Generalize
 1) Cutpoints always sit on primal vertices (when possible)
 2) Triplepoints always follow adjacent edge-cut movements
 3) Quadpoints always move to triple points
• **Triple-Vertex violations**
 - Natural Extension from 1D to 2D
 - Guard against bad angles
 - Polygonal region bounded by 2 lines
Violations

- Triple-Edge violations
 - Guard against bad angles
 - Polygonal region bounded by 2 lines
Additional Complexities

• Exterior Points

• Degeneracies
Graded Background

Octree Structure

Background Stencils
Evaluation
Table 1. Torso Simulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Min Angle</th>
<th>Condition</th>
<th>Iterations</th>
<th>At Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMStuffing</td>
<td>7.4304</td>
<td>5.42e+06</td>
<td>553</td>
<td>94.33 %</td>
</tr>
<tr>
<td>BioMesh</td>
<td>0.0000</td>
<td>2.94e+09</td>
<td>399</td>
<td>87.95 %</td>
</tr>
<tr>
<td>CGAL</td>
<td>0.0410</td>
<td>2.42e+07</td>
<td>1008</td>
<td>40.49 %</td>
</tr>
</tbody>
</table>

Table 2. Head Simulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Min Angle</th>
<th>Condition</th>
<th>Iterations</th>
<th>Mean</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMStuffing</td>
<td>6.4943</td>
<td>1.57e+18</td>
<td>493</td>
<td>-1.01e-04</td>
<td>7.64e-04</td>
</tr>
<tr>
<td>BioMesh</td>
<td>0.1804</td>
<td>7.49e+18</td>
<td>525</td>
<td>2.85e-04</td>
<td>1.44e-03</td>
</tr>
<tr>
<td>CGAL</td>
<td>0.0091</td>
<td>1.04e+20</td>
<td>1026</td>
<td>-8.84e-06</td>
<td>7.90e-04</td>
</tr>
</tbody>
</table>

Table 3. Rabbit Leg Simulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Min Angle</th>
<th>Condition</th>
<th>Iterations</th>
<th>Max E.F.</th>
<th>Max C.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMStuffing</td>
<td>7.8085</td>
<td>1.22e+07</td>
<td>728</td>
<td>8.8118</td>
<td>1.5990</td>
</tr>
<tr>
<td>BioMesh</td>
<td>0.5381</td>
<td>1.12e+07</td>
<td>1143</td>
<td>7.5172</td>
<td>1.8851</td>
</tr>
<tr>
<td>CGAL</td>
<td>0.0369</td>
<td>8.94e+07</td>
<td>1490</td>
<td>12.0471</td>
<td>0.9062</td>
</tr>
</tbody>
</table>
Evaluation (Qual.)

BioMesh3D

MMStuff
Evaluation (Qual.)

BioMesh3D

MMStuff
Evaluation (Qual.)

CGAL

MMStuff
Other Domains

Multi-Ball Drop
Mesh Cutaway