Manifold Analysis of ECG Dynamical Trajectories

Burak Erem
Dana H. Brooks

Northeastern University, Boston, MA
Introduction

- Problem: analyze multichannel cardiac electrical recordings
 - Clinical and Research interest
 - Multi-electrode catheters
 - Non-contact intra-chamber probes
 - Heart surface electrodes
 - Body surface electrodes
- 10’s to 100’s of electrodes
- Approach: analyze relationships between time waveforms from electrodes
 - Dynamical System
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads
Cardiac Electrical Dynamics

- QRS Complex: wavefront of electrical activation spreads

\[
\begin{bmatrix}
\cdot \\
\cdot \\
\cdot \\
\cdot
\end{bmatrix} = x(t)
\]
ECG Dynamics: State Space Model

Evolution Equation

\[\dot{x}(t) = f(x(t)) \]

Observation Equation

\[y(t) = Ax(t) \]
ECG Dynamics: State Space Model

Evolution Equation
\[\dot{x}(t) = f(x(t)) \]

Observation Equation
\[y(t) = Ax(t) \]

1. Describes curves/trajectories
2. Trajectories also observed in measurements
Method: Manifold Learning

- Data-driven: don’t explicitly model evolution or observation equations
- Instead, given data, learn a mapping:

\[
\left\{ x(t_1), x(t_2), \ldots, x(t_P) \right\} \xrightarrow{\text{Mapping to Manifold}} \left\{ \tilde{x}(t_1), \tilde{x}(t_2), \ldots, \tilde{x}(t_P) \right\}
\]

- Laplacian Eigenmaps:
 - Preserves local relationships
 - Similar results with other methods
Results: Canine Heart Surface

- Cardiovascular Research and Training Institute (CVRTI) data
 - Ischemia study, measured 247 electrodes
 - We analyzed QRS only! (ST more typical)
- Visualization:
 - Each time sample of 247 electrodes = single point
 - Red sphere = single point mapped to manifold

Three orthogonal views of first three dimensions after mapping
Results: Ischemia Progression

Typical Analysis of QRS Complex: Isochronal Maps of Electrical Activation Times

Manifold Analysis (yellow samples from same stage of experiment as above)

Progression of Ischemia
Results: Human Body Surface

- Data from cardiologist (Petr Stovicek)
- Heartbeats paced:
 - Tip of ablation catheter
 - Effect: controls activation patterns
- Visualization:
 - Left ventricular chamber (as volume)
 - Spheres: pacing sites
 - Colors: manual clustering
Results: Body Surface Trajectories

- Visualizations: data on manifold, same cluster coloring as pacing sites
Conclusions

- ECG data: trajectories through electrode space
- Trajectories visible on heart and body surface
- Method appears sensitive to ischemic changes during QRS (typically associated with ST)
- Future work:
 - Show correspondence of heart/body manifolds
 - Use as dynamical constraint in inverse solutions
- Questions?